35 research outputs found

    Should we mine the deep seafloor?

    Get PDF
    As land-based mineral resources become increasingly difficult and expensive to acquire, the potential for mining resources from the deep seafloor has become widely discussed and debated. Exploration leases are being granted, and technologies are under development. However, the quantity and quality of the resources are uncertain, and many worry about risks to vulnerable deep-sea ecosystems. Deep-sea mining has become part of the discussion of the United Nations Sustainable Development Goals. In this article we provide a summary of benefits, costs, and uncertainties that surround this potentially attractive but contentious topic

    Photographic identification guide to larvae at hydrothermal vents

    Get PDF
    The purpose of this guide is to assist researchers in the identification of larvae of benthic invertebrates at hydrothermal vents. Our work is based on plankton sampling at the East Pacific Rise 9-10°N vent field from 1991-2007, supplemented by benthic collections of juveniles. In addition to images and descriptions of the species, we included frequency data from large-volume plankton pump samples taken between 1998 and 2004 and time-series sediment trap samples from 2004-2005.Funding provided by NSF grants OCE-9619605, OCE-9712233, OCE-0424593 and ATM-0428122 and ChEss Grant #WHOI 1334800

    An authoritative global database for active submarine hydrothermal vent fields

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 4892–4905, doi:10.1002/2013GC004998.The InterRidge Vents Database is available online as the authoritative reference for locations of active submarine hydrothermal vent fields. Here we describe the revision of the database to an open source content management system and conduct a meta-analysis of the global distribution of known active vent fields. The number of known active vent fields has almost doubled in the past decade (521 as of year 2009), with about half visually confirmed and others inferred active from physical and chemical clues. Although previously known mainly from mid-ocean ridges (MORs), active vent fields at MORs now comprise only half of the total known, with about a quarter each now known at volcanic arcs and back-arc spreading centers. Discoveries in arc and back-arc settings resulted in an increase in known vent fields within exclusive economic zones, consequently reducing the proportion known in high seas to one third. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. The purpose of the database now extends beyond academic research and education and into marine policy and management, with at least 18% of known vent fields in areas granted or pending applications for mineral prospecting and 8% in marine protected areas.For support to prepare this manuscript, we thank the National Science Foundation (OCE08-38923, GeoEd12-02977), the NOAA Vents (now Earth-Ocean Interactions) Program and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA10OAR4320148, and WHOI.2014-05-1

    Persistent effects of disturbance on larval patterns in the plankton after an eruption on the East Pacific Rise

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 491 (2013): 67-76, doi:10.3354/meps10463.To predict how benthic communities will respond to disturbance, it is necessary to understand how disturbance affects the planktonic larval supply available to recolonize the area. Deep-sea hydrothermal vent fauna along the East Pacific Rise (EPR) experience frequent local extinctions due to tectonic and magmatic events, but the effects on regional larval abundance and diversity are unknown. We had been monitoring larvae at 9° 50' N on the EPR prior to the 2006 eruption and were able to resume collections shortly afterward. We found that many species that were common before the eruption became significantly less so afterward, whereas a few other species experienced a transient spike in abundance. Surprisingly, overall species richness in the plankton was high 9 mo after the eruption, but then decreased sharply after 1 yr and had not returned to pre-eruption levels after 2 yr. These results suggest that recovery from disturbance may continue to be affected by limited larval supply even several years after a disturbance event. This delay in recovery means that larvae of pioneer species may dominate potential colonists, even after benthic habitats have transitioned to conditions that favor later-successional species. Moreover, the combined effects of natural and anthropogenic disturbance (e.g. mining) would be likely to cause more profound and long-lasting changes than either event alone. Our results indicate that we do not have sufficient data to predict the timing of recovery after disturbance in the deep sea, even in a well-studied vent system.Support was provided by National Science Foundation Grant OCE-0424953 and a Woods Hole Oceanographic Institution grant from the Deep Ocean Exploration Institute

    Larvae from afar colonize deep-sea hydrothermal vents after a catastrophic eruption

    Get PDF
    Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 107 (2010): 7829-7834, doi:10.1073/pnas.0913187107.The planktonic larval stage is a critical component of life history in marine benthic species because it confers the ability to disperse, potentially connecting remote populations and leading to colonization of new sites. Larval-mediated connectivity is particularly intriguing in deep-sea hydrothermal vent communities, where the habitat is patchy, transient and often separated by tens or hundreds of kilometers. A recent catastrophic eruption at vents near 9°50’N on the East Pacific Rise created a natural clearance experiment and provided an opportunity to study larval supply in the absence of local source populations. Previous field observations have suggested that established vent populations may retain larvae and be largely self-sustaining. If this hypothesis is correct, the removal of local populations should result in a dramatic change in the flux, and possibly species composition, of settling larvae. Fortuitously, monitoring of larval supply and colonization at the site had been established before the eruption and resumed shortly afterward. We detected a striking change in species composition of larvae and colonists after the eruption, most notably the appearance of the gastropod Ctenopelta porifera, an immigrant from possibly >300 km away, and the disappearance of a suite of species that formerly had been prominent. This switch demonstrates that larval supply can change markedly after removal of local source populations, enabling recolonization via immigrants from distant sites with different species composition. Population connectivity at this site appears to be temporally variable, depending not only on stochasticity in larval supply, but also on the presence of resident populations.Support was provided by NSF grants OCE-969105, OCE-9712233, and OCE-0424953), WHOI grants from DOEI and the Ocean Venture Fund, a NDSEG graduate fellowship to DA, and the WHOI Jannasch Chair for Excellence in Oceanography to LM

    Introduction to the special issue : From RIDGE to Ridge 2000

    Get PDF
    Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 1 (2012): 12–17, doi:10.5670/oceanog.2012.01.Articles in this special issue of Oceanography represent a compendium of research that spans the disciplinary and thematic breadth of the National Science Foundation's Ridge 2000 Program, as well as its geographic focal points. The mid-ocean ridge (MOR) crest is where much of Earth's volcanism is focused and where most submarine volcanic activity occurs. If we could look down from space at our planet with the ocean drained, the MOR's topography and shape, along with its intervening fracture zones, would resemble the seams on a baseball, with the ocean basins dominating our planetary panorama. The volcanic seafloor is hidden beneath the green-blue waters of the world's ocean, yet therein lie fundamental clues to how our planet works and has evolved over billions of years, something that was not clearly understood 65 years ago—witness the following quote from H.H. Hess (1962) in his essay on "geopoetry" and commentary on J.H.F. Umbgrove's (1947) comprehensive summary of Earth and ocean history: The birth of the oceans is a matter of conjecture, the subsequent history is obscure, and the present structure is just beginning to be understood. Fascinating speculation on these subjects has been plentiful, but not much of it predating the last decade [the 1950s] holds water.This special issue was funded by a supplement to the Ridge 2000 Office grant at the Woods Hole Oceanographic Institution (NSF-OCE-0838923)

    Functional traits provide new insight into recovery and succession at deep-sea hydrothermal vents

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Dykman, L. N., Beaulieu, S. E., Mills, S. W., Solow, A. R., & Mullineaux, L. S. Functional traits provide new insight into recovery and succession at deep-sea hydrothermal vents. Ecology, 102(8), (2021): e03418, https://doi.org/10.1002/ecy.3418.Investigation of communities in extreme environments with unique conditions has the potential to broaden or challenge existing theory as to how biological communities assemble and change through succession. Deep-sea hydrothermal vent ecosystems have strong, parallel gradients of nutrients and environmental stress, and present unusual conditions in early succession, in that both nutrient availability and stressors are high. We analyzed the succession of the invertebrate community at 9°50′ N on the East Pacific Rise for 11 yr following an eruption in 2006 in order to test successional theories developed in other ecosystems. We focused on functional traits including body size, external protection, provision of habitat (foundation species), and trophic mode to understand how the unique nutritional and stress conditions influence community composition. In contrast to established theory, large, fast-growing, structure-forming organisms colonized rapidly at vents, while small, asexually reproducing organisms were not abundant until later in succession. Species in early succession had high external protection, as expected in the harsh thermal and chemical conditions after the eruption. Changes in traits related to feeding ecology and dispersal potential over succession agreed with expectations from other ecosystems. We also tracked functional diversity metrics over time to see how they compared to species diversity. While species diversity peaked at 8 yr post-eruption, functional diversity was continuing to increase at 11 yr. Our results indicate that deep-sea hydrothermal vents have distinct successional dynamics due to the high stress and high nutrient conditions in early succession. These findings highlight the importance of extending theory to new systems and considering function to allow comparison between ecosystems with different species and environmental conditions.Funding for L. Dykman, L. Mullineaux, and S. Beaulieu was provided by NSF OCE-1829773. The Synthesis Centre of the German Centre for Integrative Biodiversity Research (sDiv) funded the sFDvent working group and database

    Larvae of Deep-Sea Invertebrates Harbor Low-Diversity Bacterial Communities

    Get PDF
    Microbial symbionts are a common life-history character of marine invertebrates and their developmental stages. Communities of bacteria that associate with the eggs, embryos, and larvae of coastal marine invertebrates tend to be species specific and correlate with aspects of host biology and ecology. The richness of bacteria associated with the developmental stages of coastal marine invertebrates spans four orders of magnitude, from single mutualists to thousands of unique taxa. This understanding stems predominately from the developmental stages of coastal species. If they are broadly representative of marine invertebrates, then we may expect deep-sea species to associate with bacterial communities that are similar in diversity. To test this, we used amplicon sequencing to profile the bacterial communities of invertebrate larvae from multiple taxonomic groups (annelids, molluscs, crustaceans) collected from 2500 to 3670 m in depth in near-bottom waters near hydrothermal vents in 3 different regions of the Pacific Ocean (the East Pacific Rise, the Mariana Back-Arc, and the Pescadero Basin). We find that larvae of deep-sea invertebrates associate with low-diversity bacterial communities (similar to 30 bacterial taxa) that lack specificity between taxonomic groups. The diversity of these communities is estimated to be similar to 7.9 times lower than that of coastal invertebrate larvae, but this result depends on the taxonomic group. Associating with a low-diversity community may imply that deep-sea invertebrate larvae do not have a strong reliance on a microbiome and that the hypothesized lack of symbiotic contributions would differ from expectations for larvae of coastal marine invertebrates

    Toward cyberinfrastructure to facilitate collaboration and reproducibility for marine integrated ecosystem assessments

    Get PDF
    Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Earth Science Informatics 10 (2017): 85-97, doi:10.1007/s12145-016-0280-4.There is a growing need for cyberinfrastructure to support science-based decision making in management of natural resources. In particular, our motivation was to aid the development of cyberinfrastructure for Integrated Ecosystem Assessments (IEAs) for marine ecosystems. The IEA process involves analysis of natural and socio-economic information based on diverse and disparate sources of data, requiring collaboration among scientists of many disciplines and communication with other stakeholders. Here we describe our bottom-up approach to developing cyberinfrastructure through a collaborative process engaging a small group of domain and computer scientists and software engineers. We report on a use case evaluated for an Ecosystem Status Report, a multi-disciplinary report inclusive of Earth, life, and social sciences, for the Northeast U.S. Continental Shelf Large Marine Ecosystem. Ultimately, we focused on sharing workflows as a component of the cyberinfrastructure to facilitate collaboration and reproducibility. We developed and deployed a software environment to generate a portion of the Report, retaining traceability of derived datasets including indicators of climate forcing, physical pressures, and ecosystem states. Our solution for sharing workflows and delivering reproducible documents includes IPython (now Jupyter) Notebooks. We describe technical and social challenges that we encountered in the use case and the importance of training to aid the adoption of best practices and new technologies by domain scientists. We consider the larger challenges for developing end-to-end cyberinfrastructure that engages other participants and stakeholders in the IEA process.Support for this research was provided by the U. S. National Science Foundation #0955649 with additional support to SB by the Investment in Science Fund at Woods Hole Oceanographic Institution
    corecore